Investment into Defensive Traits by Anuran Prey (Lithobates pipiens) Is Mediated by the Starvation-Predation Risk Trade-Off
نویسندگان
چکیده
Prey can invest in a variety of defensive traits when balancing risk of predation against that of starvation. What remains unknown is the relative costs of different defensive traits and how prey reconcile investment into these traits when energetically limited. We tested the simple allocation model of prey defense, which predicts an additive effect of increasing predation risk and resource availability, resulting in the full deployment of defensive traits under conditions of high risk and resource saturation. We collected morphometric, developmental, and behavioural data in an experiment using dragonfly larvae (predator) and Northern leopard frog tadpoles (prey) subject to variable levels of food availability and predation risk. Larvae exposed to food restriction showed limited response to predation risk; larvae at food saturation altered behaviour, development, and growth in response to predation risk. Responses to risk varied through time, suggesting ontogeny may affect the deployment of particular defensive traits. The observed negative correlation between body size and activity level for food-restricted prey--and the absence of a similar response among adequately-fed prey--suggests that a trade-off exists between behavioural and growth responses when energy budgets are limited. Our research is the first to demonstrate how investment into these defensive traits is mediated along gradients of both predation risk and resource availability over time. The interactions we demonstrate between resource availability and risk level on deployment of inducible defenses provide evidence that both internal condition and extrinsic risk factors play a critical role in the production of inducible defenses over time.
منابع مشابه
Carryover effects of phenotypic plasticity: embryonic environment and larval response to predation risk in Wood Frogs (Lithobates sylvaticus) and Northern Leopard Frogs (Lithobates pipiens)
Limitations of phenotypic plasticity affect the success of individuals and populations in changing environments. We assessed the plasticity-history limitation on predator-induced defenses in anurans (Wood Frogs, Lithobates sylvaticus (LeConte, 1825), and Northern Leopard Frogs, Lithobates pipiens (Schreber, 1782)), predicting that plastic responses to predation risk by dragonfly larvae (family ...
متن کاملForaging mode switching: the importance of prey distribution and foraging currency
http://dx.doi.org/10.1016/j.anbehav.2015.04.014 0003-3472/© 2015 The Authors. Published on behalf license (http://creativecommons.org/licenses/by/4.0/) Foraging methods are highly variable, but can be grouped into two modes: searching and ambush. While research has focused on the functioning of each mode, the question of how animals choose which to use has been largely neglected. Here we consid...
متن کاملOptimizing time and resource allocation trade-offs for investment into morphological and behavioral defense.
Prey organisms are confronted with time and resource allocation trade-offs. Time allocation trade-offs partition time, for example, between foraging effort to acquire resources and behavioral defense. Resource allocation trade-offs partition the acquired resources between multiple traits, such as growth or morphological defense. We develop a mathematical model for prey organisms that comprise t...
متن کاملEvidence of the Trade-Off between Starvation and Predation Risks in Ducks
The theory of trade-off between starvation and predation risks predicts a decrease in body mass in order to improve flight performance when facing high predation risk. To date, this trade-off has mainly been validated in passerines, birds that store limited body reserves for short-term use. In the largest avian species in which the trade-off has been investigated (the mallard, Anas platyrhyncho...
متن کاملPredicting population-level risk effects of predation from the responses of individuals.
Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning that there is often little consideration given to the key role predator ...
متن کامل